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The electron-optical properties of a stigmatic crossed-field energy analyzer (double-focusing
Wien filter) have been obtained from exact trajectory calculations. The results are given in
the form of focusing and dispersing coefficients to the second order. These coefficients enable
the device designer or potential user to calculate the total beam transfer and evaluate the
resulting beam quality without additional ray tracing. The specific device for which
calculations are made employs a uniform electric field and a toroidal magnetic field. This
analyzer is of special interest in our laboratory because it can be constructed with a very
small stray magnetic field, and in addition to its dispersive properties it also rotates the spin

of a polarized electron beam.

PACS numbers: 41.80.Dd

INTRODUCTION

The principle of using crossed uniform electric and magnetic
fields as a velocity analyzer (Wien filter) has been known for
many years.! It was only much later that, in addition to its
velocity dispersive properties, the first-order focusing prop-
erties were analyzed,2-4 but only in the plane of dispersion.
More recent analyses’™7 have concentrated on the first-order
properties of short devices, and some of the second-order
terms®9 in the plane of dispersion. Such crossed-field devices
have been used, for example, as mass analyzers,1:4510.11 en-
ergy analyzers 812 and monochromators.?

For uniform fields which are mutually perpendicular to
each other and the direction of beam propagation, focusing
occurs only in the plane of energy dispersion3 which is the
direction of the electric field. Additional astigmatic lenses are
required for those applications where preservation of rota-
tional beam symmetry is essential. Legler!3 was the first to
show that by curving the electric field one can obtain stigmatic
focusing while keeping the magnetic field uniform. Legler
calculated the second-order angular aberrations for the case
of an electric field produced by nonconcentric cylinders and
demonstrated a successful electron monochromator. Wahlin®
showed that, by introducing a gradient into the electric field,
the astigmatic focusing could be canceled. This principle has
been used in mass analyzers.514 Anderson® was the first to
discuss the possibility of obtaining stigmatic focusing by using
a non-uniform magnetic field. He also showed that a sec-
ond-order inhomogeneity in the magnetic field will eliminate
the second-order angular aberration [the term in o in Eq. (6)]
in the dispersion plane. This principle has been used in a high
transmission electron monochromator and energy analyzer.15
Seliger” showed that astigmatic focusing could be obtained
by using tilted pole pieces to produce the magnetic field while
keeping the electric field uniform. He calculated the first-
order properties both in the plane of dispersion and in the
perpendicular plane.

Finally, Collins!® has calculated the first-order properties
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for devices in which cylindrical electric fields and toroidal
magnetic fields are superimposed, and showed that it is always
possible to obtain stigmatic focusing by adjusting the length
of the fields and their relative strengths. He has designed and
constructed two stigmatic devices, one with uniform electric
field and one with uniform magnetic field. Of particular in-
terest to us is the fact, shown by Collins, that the stigmatic
devices can be used to transform a spin-polarized electron
beam from transverse to longitudinal polarization and vice
versa while performing energy analysis. The design of such
a device requires knowledge of the second-order aberration
coefficients which are not known. We have therefore calcu-
lated the complete second-order properties for the case of
uniform electric field and toroidal magnetic field. Collins has
shown that this device has advantages both in ease of con-
struction and in lack of stray magnetic fields outside of the
toroidal winding used to produce the magnetic field. This
latter property is especially advantageous for experiments
with low energy electrons.

FIELD GEOMETRY AND FIRST-ORDER
PROPERTIES

We will discuss the motion of an electron initially moving
at the origin with velocity vy (energy eVy) in the z direction
under the action of a uniform transverse electric field and a
toroidal magnetic field'? (See Fig. 1):

E = [EI, Ey» Ez] = [EO: 070]1
Roy ,
(Ro—x)? + y?
Ro(Ro — x) ]
—, 0{. (1
®(Ro— %)? + y2 m
Here Ry is the radius of the toroidal field at the z axis. In this

treatment, as in all previous work,1-16 we neglect the effects
of fringing fields. Because of the small extent of the fringing

B =B, B, B,]= [Bo
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fields compared to the total length, these effects are expected
to be small.
The beam is transmitted undeflected when

Eo = voBo. (2)
First-order stigmatic focusing requires that
Ro = 4Vo/Eg (3)
and the corresponding focusing length L is given by
L/Ry==/V?2. (4)

GENERAL FOCUSING AND DISPERSIVE
PROPERTIES

In the absence of axial symmetry, we use Cartesian coor-
dinates. The parameters of a ray in the input plane z = 0 are
(x1, a1, y1, B1) where &) and B, are the ray slopes dx/dz and
dy/dz, respectively, z being the direction of beam propaga-
tion. At the output plane z = L the corresponding parameters
are (xg, ag, Yo, 32). We express these output parameters as
functions of the input parameters and the energy deviation
6 given by V = V4 (1 + 8) where eV is the energy of the

central ray (x} = o) = y; = 8, = 0):
%2;=f1 (;?o’ al);—;; B, 5)
az = fa (x1/Ro, a1, y1/Ro, B1, 0)
;l.l{“z=f3 (;—;, al:;_:, B, 5)
B2 = f4 (;_:)’al,l_y{l;,ﬂb 5)- (5)

Note that the position coordinates are expressed in dimen-
sionless form by dividing by the radius of curvature of the
toroidal magnetic field at the central ray. In this way the fo-
cusing and dispersing properties are independent of the
physical size of the crossed-field analyzer.

Assuming that all of the input parameters in Eq. (5) are
much smaller than unity, it is possible to express the output
parameters as power series in the input parameters!8:

X2 X1 Y1
oA Ay A+ AL+ A
R MR o) P YRe aB1
(212 Y1\? 2 2 5
+ Ay + Ayy + A q0f + Aﬁﬂﬁl + Ajsd
Ro Ro
X1 Y1 X1 X1
Ay~ + Aa + Ara o1 + A
+ Ry Re ger1By g ag xﬂRO 81
X1 Y1 Y1 Y1
+ A 0+ Ay a1+ AT 01+ Ay =
£2) R() y Ro 1 yB Ro ﬂl yd Ro

+ Agsoid + AgsB16 + ... (6)

The expansions for ag, ya/Ro, and B are of the same form,
with coefficients B, C, and D, respectively. While some of the
coefficients were expected to be zero, all of the second-order
terms were retained since we did not know a priori which ones
would vanish. It should be possible, however, to determine
which coefficients are zero from a general treatment such as
that of Hawkes.19
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FIG. 1. Stigmatic Wien filter composed of toroidal magnetic and uniform
electric field.

We have limited this investigation to second-order effects
although it became clear in the course of the calculations that
the third-order coefficients can make significant contributions
in some cases when the input parameters exceed about 0.05.
However, this range of validity is adequate for many appli-
cations. Furthermore, in view of the labor which would be
needed to evaluate 35 third-order coefficients for each of the
four parameters by the present methods, it appears desirable
to seek an alternate approach to calculating coefficients of
higher orders.

The first five coefficients of the expansion are the first-order
matrix elements, which in the plane of dispersion (xz plane)
can be written as

x1
X2
= Ar Ay As]| R
Rol= [ x 5] 0 (7)
By B, B; o)
(25)) 5

with a similar matrix for y5/R¢ and 83. From the work of
Seliger,” these first-order matrices are given by:

. [%1]
X2
= —1 0 17|Re

= 8
rol=| 5 o) N ®)
[ X2 ] 5 J
- 1]
Ya
z= -100 0

= 9
rol= 5 o] A ©
.62. S

CALCULATIONS OF TRAJECTORIES

The equations of motion are obtained from the Lorentz
force F on an electron of velocity v in a combined electric and
magnetic field:

= —¢[E + v X B] (10)

where e is the absolute value of the electronic charge. With
the fields from Eq. (1), the differential equations are

mi = eE, + ezB,
mij = —ezB,

mZ = eyB, — eiB,
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where the dots represent differentiation with respect to time.
These three differential equations are integrated simulta-
neously by a standard Runge-Kutta technique with a time
step of 10710 s for 10 eV electrons. The actual calculations
were performed on a UNIVAC 1108 computer, using dou-
ble-precision arithmetic. From the integrations one obtains
(x,y,2) and (%,,2) as a function of time. The ray slopes are
obtained from dx/dz = %/% and dy/dz = §/%. This method
was used to calculate two specific cases quoted by Seliger.”
Excellent agreement was obtained.

Using this method we can calculate any desired set of tra-
jectories through the device. One might, for example, evaluate
beam performance by using the phase-space approach where
input and output beams are represented by emittance di-
agrams. We have chosen to evaluate the coefficients in Eq.
(5), because they allow the device designers to evaluate device
performance without making detailed trajectory calcula-
tions.

CALCULATION OF THE TRANSFER
COEFFICIENTS

The transfer coefficients are obtained from selected sets of
trajectories using a procedure we developed from a method
used by Foster.20 For coefficients which involve a single pa-
rameter, say «aj, trajectories are traced for several values of
ay with all other input parameters zero. Each output pa-
rameter is plotted as a function of «; and the slope of the initial
straight line portions gives the first-order coefficients. The
first-order portions are subtracted, the results divided by «a;,
and replotted. The slope of the initial straight line portion now
gives the second order coefficient. For coefficients which
involve two parameters, say a; and 8, trajectories are traced
for several values of oy = ) with the other input parameters
zero. After subtracting the terms in oy, 8), @2 and 8,2 the
term in o) (3, is obtained by dividing by a; = 8, plotting, and
determining the slope of the initial straight-line portion. An
advantage of this procedure is that it shows clearly where
higher-order terms begin to influence the results.

The results of these calculations are given in Table I. The
first-order coefficients were found to be well within 1% of
those expected from Seliger’s work? [Egs. (8) and (9)]. In ex-
tracting the second-order coefficients, the first-order coeffi-
cients were equated to the theoretical values. From the scatter
of points about the straight-line fits we estimate that the sec-
ond-order coefficients are accurate to about 5%, except for
the smaller coefficients where the accuracy is about 10%. As
an independent check of the accuracy of the second-order
coefficients we carried out second-order analytical slolutions
of Egs. (11), following Legler’s treatment,1? and obtained
values for Aya, Aug, Agg, Cacs Cap, and Cgg. We found A,
= —4.33, A,gg = —1.00, Caﬁ =-=2.00 and Aaﬂ = Caa = Cg,s
= Q. The largest disagreement is about 7% in A .. Coefficients
less than 0.02 are not considered to be significant and are given
as zero in Table L

By extending Legler’s method, it should be possible with
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TABLE I. Stigmatic Wien filter focusing and dispersing coefficients to
the second order. Vertical column designates the coefficient subscripts as
in Eq. (6).

A B C D
x -1.0 0.0 0.0 0.0
« 0.0 -1.0 0.0 0.0
y 0.0 0.0 -1.0 0.0
B 0.0 0.0 0.0 -1.0
8 1.0 0.0 0.0 0.0
xx —3.61 0.0 0.0 0.0
yy -2.0 0.0 0.0 0.0
an —4.0 0.0 0.0 0.0
686 -1.0 0.0 0.0 0.0
86 -1.2 -2.8 0.0 0.0
xy 0.0 0.0 0.0 0.0
af 0.0 0.0 —1.93 0.0
Xa 0.3 9.95 0.0 0.0
xB 0.0 0.0 0.0 40
ya 0.0 0.0 0.0 35
yB 0.0 0.0 0.0 0.0
xd 373 5.35 0.0 0.0
ad -3.22 —4.60 0.0 0.0
yé 0.22 0.3 0.0 -3.18
86 0.0 0.0 —1.65 —1.81

considerable labor to calculate all of the second-order coef-
ficients analytically. However, it would seem more desirable
to use a general treatment, such as that of Hawkes,19 to obtain
the coefficients in the form of aberration integrals. In any case,
the method presented here of obtaining the coefficients di-
rectly from trajectories is valuable as an independent check
of such analytic forms.
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